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Introduction

▶ Time series forecasting is of pressing demand in real-world
scenarios covering various domains. However, the temporal variations
are often influenced by external factors, therefore solely focusing on
the target of interest, is insufficient to guarantee accurate prediction.

▶ Exogenous variables are introduced to the time series forecaster
for informative purposes and do not need to be predicted.

▶ As a practical forecasting scenario, forecasting with exogenous
variables requires the model to reconcile the discrepancy and
dependency among endogenous and exogenous variables.
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Problem Formulation

▶ Transformer has garnered significant interest in time series data
due to their ability to capture long-term temporal dependencies
and complex multivariate correlations.

▶ Existing Transformer-based approaches only focus on multivariate or
univariate time series forecasting paradigms and do not conduct
special designs for exogenous variables.

▶ Existing deep models incorporating exogenous variables necessitate
the alignment of the endogenous and exogenous series, struggling to
handle real-world irregular and heterogeneous data.

Contribution

▶ Motivated by the universality and importance of exogenous variables
in time series forecasting, we empower the canonical Transformer to
simultaneously modeling exogenous and endogenous variables
without any architectural modifications.

▶ We propose a simple and general TimeXer model, which employs
patch-level and variate-level representations respectively for
endogenous and exogenous variables, with an endogenous global
token as a bridge in-between. With this design, TimeXer can capture
intra-endogenous temporal dependencies and
exogenous-to-endogenous correlations jointly.

▶ Extensive experiments on twelve datasets show that TimeXer can
better utilize exogenous information to facilitate endogenous
forecasting, in both univariate and multivariate settings.

TimeXer Architecture

▶ The goal of forecasting model Fθ parameterized by θ is to predict the future S time steps
x̂ = {xT+1, ..., xT+S} based on both historical observations x1:T and corresponding exogenous series:
z1:Tex

x̂T+1:T+S = Fθ (x1:T , z1:Tex
).

▶ In TimeXer, the endogenous and exogenous variables are manipulated by different embedding
strategies:
▶ The Endogenous variable is embedded into a series of patch-wise temporal token Pen and a learnable global token Gen.
▶ Each exogenous series is embedded in a series-wise variate token Vex.
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▶ Endogenous Self-Attention is applied over endogenous temporal tokens and learnable global
token to aggregating patch-level information across the entire series and (2) dispatching the
variate-level correlations.

P̂l
en, Ĝ
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▶ Exogenous-to-Endogenous Cross-Attention is applied between the learned global token of the
endogenous and and the exogenous variate tokens to learn correlation between external information
and endogenous series.
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▶ Parallel Multivariate Forecast can be achieved by employing the channel independence
mechanism, for each variable of the multivariate, it is treated as the endogenous one.

Forecasting Results
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Performance of TimeXer
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Generality of TimeXer

▶ Increasing Look-back Length: TimeXer can be adapted to
situations where the look-back of endogenous and exogenous are
mismatched. The forecasting performance benefits from enlarged
look-back lengths of both endogenous and exogenous series.
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▶ Missing Values: Introducing information-rich exogenous variables
is the key to TimeXer’s forecasting performance improvement.

▶ Scalability: TimeXer achieves superior performance on large-scale
meteorology datasets, where the endogenous series is the hourly
temperature from the weather station and the exogenous information
is corresponding meteorological indicators from adjacent areas.

M
SE

Endogenous 
Variable 

4 Exogenous Variables
per area 

Problem FormulationPartial Observations From Stations Model Performance

TimeXer iTrans. DLinear RLinear

0.200

0.207 0.208

0.212

0.216

PatchTST

Model Analysis

▶ Variate-wise Correlations: The learned cross-attention map
reveals that TimeXer has the ability to distinguish between
exogenous variables, enhancing the models’ interpretability.
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▶ Efficiency: Benefiting from the cross-attention design between
endogenous and exogenous series, TimeXer omits the interaction
among various exogenous variate tokens, resulting in favorable model
efficiency with optimal forecasting performance.
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